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A planar map is the proper embedding of a planar connected graph in the
2-dimensional sphere seen up to continuous deformations.

Planar Maps – Definition.

Plane maps are rooted : by orienting an edge.

Distance between two vertices = number of edges between them.
Planar map = Metric space

planar map = planar graph + cyclic order of neigbours around each vertex.

face = connected component of the sphere when the edges are removed



Why maps ?

What the motivation for studying maps instead of graphs ?

Because maps have more structure than graphs,
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What the motivation for studying maps instead of graphs ?

Because maps have more structure than graphs,
they are actually simpler to study.

Euler Formula : # vertices + # faces = 2 + # edges

A quadrangulation with n faces has 2n edges and n + 2 vertices.



Which maps ?

Quadrangulations (all faces have degree 4)

Cubic maps (all vertices have degree 3)

Simple maps (no loops nor multiple edges)
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Random maps

What is the behavior of Qn when n goes to infinity ?
typical distances?

convergence towards a continuous object ?

well understood:

• Schaeffer’s bijection : quadrangulations ↔ labeled trees.
Labels in the trees = distances between the vertices and the root.

• distance between two random points ∼ n1/4 + law of the distance
[Chassaing-Schaeffer ’04]

• cvgence of normalized quadrangulations + properties of the limit
[Marckert-Mokkadem ’06], [Le Gall ’07], [Le Gall, Paulin ’08] [Miermont ’08]

• cvgence of normalized quadrangulations towards the Brownian map for
Gromov-Hausdorff topology, [Miermont ’13], [Le Gall ’13]

Hausdorff dimension = 4 topology of the limit = sphere



Simulations by N.Curien

Random maps

What is the behavior of Qn when n goes to infinity ?
typical distances?

convergence towards a continuous object ?

+ what if quadrangulations are
replaced by triangulations, maps,

simple triangulations, simple maps, ...?



Random maps

What is the behavior of Qn when n goes to infinity ?
typical distances?

convergence towards a continuous object ?

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

Idea :

+ what if quadrangulations are
replaced by triangulations, maps,

simple triangulations, simple maps, ...?



Random maps + what if quadrangulations are
replaced by triangulations, maps,

simple triangulations, simple maps, ...?

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

Idea:



Random maps + what if quadrangulations are
replaced by triangulations, maps,

simple triangulations, simple maps, ...?

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

Idea:

So far: • Quadrangulations [Miermont ’13 + Le Gall ’13]

• Simple triangulations and quad., [Addario-Berry, A., ’13]

• 2p-angulations and triangulations [Le Gall, ’13]

• General maps [Betinelli, Jacob, Miermont, ’13]

• Bipartite maps [Abraham, ’14]

• Quadrangulations [Miermont ’13 + Le Gall ’13]

• Quad with no pendant vertices [Beltran, Le Gall, ’13]



Random maps + what if quadrangulations are
replaced by triangulations, maps,

simple triangulations, simple maps, ...?

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

Idea:

So far: • Quadrangulations [Miermont ’13 + Le Gall ’13]

• Simple triangulations and quad., [Addario-Berry, A., ’13]

• 2p-angulations and triangulations [Le Gall, ’13]

• General maps [Betinelli, Jacob, Miermont, ’13]

• Bipartite maps [Abraham, ’14]

Today: • Simple maps [A., Bernardi, Collet, Fusy, ’14]

• Quadrangulations [Miermont ’13 + Le Gall ’13]

• Quad with no pendant vertices [Beltran, Le Gall, ’13]



Random maps + what if quadrangulations are
replaced by triangulations, maps,

simple triangulations, simple maps, ...?

The Brownian map is a universal limiting object.
All ”reasonable models” of maps (properly rescaled) are
expected to converge towards it.

Idea:

An important remark:

Thanks to an argument of [Le Gall ’13], enough to :
• understand the distance between any point and the root,
• show that the distance between two points is tight.
• prove the invariance under rerooting

and use the result of [Miermont ’13], [Le Gall ’13] to conclude.

So far: no direct proof known.
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More precisely: the result

Theorem : [A., Bernardi, Collet, Fusy]
Sn = { simple maps with n edges }
Sn = uniform random element of Sn. Then:(
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for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.
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Theorem : [A., Bernardi, Collet, Fusy]
Sn = { simple maps with n edges }
Sn = uniform random element of Sn. Then:(

V (Sn),

(
1

2n

)1/4

dSn

)
(d)−−→ (M,D?),

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

• same scaling n1/4 as for general maps

• roughly : need to understand the distance between any pair of points

• The Brownian Map
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Orientations

First: orientation for simple triangulations

3-orientation = orientation of the edges s.t.

out( ) = 1

out( ) = 3

First: orientation for simple triangulations

These orientations characterize simple
triangulations [Schnyder]

Moreover, there exists a unique one without
counterclockwise cycles.

What about general simple maps ?
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⇒ Give a canonical triangulation
of a simple map

Orientations
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Oriented binary trees

• Orient each inner edge arbitrarily

• Apply the following local rule :

• See as opening stems
and as closing stems.

• Make the closure

• 3 opening stems are left
unmatched, we close them at ∞

• We obtain a bipartite cubic map
Theorem : [Bousquet-Mélou, Schaeffer ’00] This is a bijection between

• Start from a rooted binary tree (each
inner vertex has 3 neighbours)

• one of them is incident to the root
corner: the tree is balanced

balanced oriented binary trees and bipartite cubic maps
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• Apply the following local rule :

• Turning clockwise around the tree,
do the following closures:

1 green edge crossednext opening stem

From bipartite cubic maps to simple maps

• Connect the 3 outer vertices into a
triangle

• Add 3 vertices and close the remaining
opening stems sector by sector

outer-triangular simple maps and balanced oriented binary trees

Corollary : [ABCF] We get a bijection between

(with n + 3 edges) (with n edges)
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• Add 3 vertices and close the remaining
opening stems in the same way.
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From blossoming trees to labeled trees

label of a vertex =
minimum label of its corners

In the following:
Labels gives approximate
distances to the root in the map
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From blossoming trees to labeled trees

Around each vertex : i+1i−1

For instance, for a node of degree 1, 4 possibilities:
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From blossoming trees to labeled trees

• Labeled tree = GW binary trees + random displacements on edges

exactly the setting of [Marckert ’08]:
convergence to the Brownian snake with the labels normalized by (2n)1/4
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2i−1 2i
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2i 2i
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2i i+1

2i

i+12i−1

1/4 1/41/2 1/4 1/4 1/4 1/4

To do that :
• encode the maps by some trees.
• study the limits of trees,
• interpret the distance in the maps by some function of the tree.



Convergence of labeled trees

Contour and label processes of a labeled tree

Theorem : [Marckert ’08]
For a sequence of simple random outer-triangular maps (Mn), the
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)
0≤t≤1
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n→∞

(et, Zt)0≤t≤1,
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i≤k≤j

Cn(k)iff

0 1

(et)0≤t≤1= Brownian excursionTe

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

u v

ū

ρ = 0̄

de(u, v) = eu + ev − 2 minu≤s≤v es
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u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Brownian snake (et, Zt)0≤t≤1

1st step : the Brownian tree [Aldous]
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Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)

2] = de(s, t)

Z ∼ Brownian motion on the tree

Brownian snake (et, Zt)0≤t≤1

2nd step : Brownian labels

1st step : the Brownian tree [Aldous]



0 1u v

ū

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)

2] = de(s, t)

Z ∼ Brownian motion on the tree

Brownian snake (et, Zt)0≤t≤1

2nd step : Brownian labels

1st step : the Brownian tree [Aldous]

Theorem :(
(8n)−1/2Cbntc, (2n/1)−1/4Z̃bntc

)
0≤t≤1

(d)→
n→∞

(et, Zt)0≤t≤1,



Distances in simple outer-triangular maps

Theorem :
Sn= random outer-triangular simple map, then for all ε > 0:

i.e. the label process of the tree gives the distance to the
root in the map.

Sn = outer-triangular simple map

(Cbntc, Z̃bntc) = contour and label process of the associated tree

Zbntc = distance in the map between vertex ”bntc” and the root.

To do that :
• encode the maps by some trees.
• study the limits of trees,
• interpret the distance in the maps by some function of the tree.

P
(

sup
0≤t≤1

{∣∣∣Z̃bntc − Zbntc

∣∣∣} ≥ εn1/4

)
→ 0.



Distances in simple maps

Claim : dM (root, u) ≤ Label of u
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Distances in simple maps

Claim : dM (root, u) ≤ Label of u

• Consider the Left Most Path from (u, v) to the root face.
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• From the property of the
closure, on the left of the LMP
the labels decrease exactly by 1.

• The LMP is not self-intersecting:
it reaches the outer-face



LMP are almost geodesic
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LMP are almost geodesic
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Leftmost path

Another path: can it be shorter ?

Tq

Consider the 3-orientation of the
map with buds

Use the buds to triangulate the
submap surrounded by the two
paths.



LMP are almost geodesic

Euler Formula :
|E(Tq)| = 3|V (Tq)|−3− (`p+`q)

3-orientation + LMP :
|E(Tq)| ≥ 3|V (Tq)| − 2`q − 2

=⇒ `q ≥ `p + 1
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Leftmost path

Another path: can it be shorter ?

Tq

Consider the 3-orientation of the
map with buds

Use the buds to triangulate the
submap surrounded by the two
paths.

`p

`q



LMP are almost geodesic
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LMP are almost geodesic

A

u

`p

`q ≥ `p

A

u

`p
`q

`q ≥ `p + 3

A

u

`p
`q

`q ≥ `p − 2

A

u

`p
`q

`q ≥ `p + 1

YES

with possible equality

Leftmost path

Another path: can it be shorter ?



LMP are almost geodesic

YES ... but not too often
Leftmost path

Another path: can it be shorter ?

A Bad configuration =
too many windings around the LMP

But w.h.p a winding cannot be too short.

=⇒ w.h.p the number of windings is o(n1/4).



LMP are almost geodesic

Proposition: [Addario-Berry, A. ’13]
For ε > 0, let An,ε be the event that there exists
u ∈Mn such that
Label of u ≥ dMn(u, root) + εn1/4.
Then under the uniform law on Mn, for all ε > 0:

P (An,ε)→ 0.

YES ... but not too often
Leftmost path

Another path: can it be shorter ?

A Bad configuration =
too many windings around the LMP

But w.h.p a winding cannot be too short.

=⇒ w.h.p the number of windings is o(n1/4).
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Žu,v = min{Zs, u ≤ s ≤ v}
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Žu,v
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Distances are tight

u v

Zu Zv

Zu−1

Zu−2

Žu,v

Žu,v = min{Zs, u ≤ s ≤ v}

Žu,v−1

Blue path = path of length Zu + Zv − 2Žu,v + 2

Since (n−1/4Zbntc) converges ⇒ (dn) tight



The result for the last time

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

The Brownian Map ??

Theorem : [A., Bernardi, Collet, Fusy]
Sn = { simple maps with n edges }
Sn = uniform random element of Sn. Then:(

Sn,

(
1

2n

)1/4

dSn

)
(d)−−→ (M,D?),
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ū

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)

2] = de(s, t) Z ∼ Brownian motion on the tree

The Brownian map
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Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)

2] = de(s, t) Z ∼ Brownian motion on the tree

D◦(s, t) = Zs + Zt − 2 max
(

inf
s≤u≤t

Zu, inf
t≤u≤s

Zu

)
, s, t ∈ [0, 1] .

The Brownian map
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ū

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)

2] = de(s, t) Z ∼ Brownian motion on the tree

D◦(s, t) = Zs + Zt − 2 max
(

inf
s≤u≤t

Zu, inf
t≤u≤s

Zu

)
, s, t ∈ [0, 1] .

D∗(a, b) = inf
{ k−1∑
i=1

D◦(ai, ai+1) : k ≥ 1, a = a1, a2, . . . , ak−1, ak = b
}
,

The Brownian map
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ū

Te = [0, 1]/ ∼e
u ∼e v iff de(u, v) = 0

de(u, v) = eu + ev − 2 minu≤s≤v es

Conditional on Te, Z a centered Gaussian process with Zρ = 0 and
E[(Zs − Zt)

2] = de(s, t) Z ∼ Brownian motion on the tree

D◦(s, t) = Zs + Zt − 2 max
(

inf
s≤u≤t

Zu, inf
t≤u≤s

Zu

)
, s, t ∈ [0, 1] .

D∗(a, b) = inf
{ k−1∑
i=1

D◦(ai, ai+1) : k ≥ 1, a = a1, a2, . . . , ak−1, ak = b
}
,

The Brownian map

Then M = (Te/ ∼D? , D∗) is the Brownian map.



A word of conclusion

Nice to see that the idea of LMP introduced for simple triangulations
also work for simple maps.

Natural further step: try to adapt the techniques for all the bijections
involving blossoming trees. In particular in the unified setting of
[Bernardi, Fusy ’10] and [A., Poulalhon ’14]
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embedding as a planar map.
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then about 2-connected and connected planar graphs).



A word of conclusion

Nice to see that the idea of LMP introduced for simple triangulations
also work for simple maps.

Natural further step: try to adapt the techniques for all the bijections
involving blossoming trees. In particular in the unified setting of
[Bernardi, Fusy ’10] and [A., Poulalhon ’14]

Question: Can we make it work for 3-connected planar maps ?

By Whitney’s theorem, a 3-connected planar graph has a unique
embedding as a planar map.

⇒ would permit to get results about 3-connected planar graphs (and
then about 2-connected and connected planar graphs).

Thank you !


