Simple maps (also) converge to the Brownian map

Marie Albenque (CNRS, LIX, École Polytechnique)

joint work with Olivier Bernardi (Brandeis University), Gwendal Collet and Eric Fusy (LIX)

MAC2 Workshop, 7th July 2014

Planar Maps - Definition.

A planar map is the proper embedding of a planar connected graph in the 2-dimensional sphere seen up to continuous deformations.

Planar Maps - Definition.

A planar map is the proper embedding of a planar connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.

Planar Maps - Definition.

A planar map is the proper embedding of a planar connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex. face $=$ connected component of the sphere when the edges are removed

Planar Maps - Definition.

A planar map is the proper embedding of a planar connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex. face $=$ connected component of the sphere when the edges are removed Plane maps are rooted: by orienting an edge.

Planar Maps - Definition.

A planar map is the proper embedding of a planar connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map $=$ planar graph + cyclic order of neigbours around each vertex.
face $=$ connected component of the sphere when the edges are removed
Plane maps are rooted: by orienting an edge.
Distance between two vertices $=$ number of edges between them.
Planar map $=$ Metric space

Why maps ?

What the motivation for studying maps instead of graphs ?
Because maps have more structure than graphs, they are actually simpler to study.

Why maps ?

What the motivation for studying maps instead of graphs ?
Because maps have more structure than graphs, they are actually simpler to study.

Euler Formula: \# vertices $+\#$ faces $=\mathbf{2}+\#$ edges
A quadrangulation with n faces has $2 n$ edges and $n+2$ vertices.

Which maps ?

Quadrangulations (all faces have degree 4)

Simple maps (no loops nor multiple edges)

Cubic maps (all vertices have degree 3)

Random maps

$\mathcal{Q}_{n}=\{$ Quadrangulations of size $n\}$ $=n+2$ vertices, n faces, $2 n$ edges
$Q_{n}=$ Random element of \mathcal{Q}_{n}
$\left(V\left(Q_{n}\right), d_{g r}\right)$ is a random compact metric space

Random maps

$\mathcal{Q}_{n}=\{$ Quadrangulations of size $n\}$ $=n+2$ vertices, n faces, $2 n$ edges
$Q_{n}=$ Random element of \mathcal{Q}_{n}
$\left(V\left(Q_{n}\right), d_{g r}\right)$ is a random compact metric space

Simulations by N.Curien

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?
convergence towards a continuous object ?

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?

convergence towards a continuous object ?

well understood:

- Schaeffer's bijection: quadrangulations \leftrightarrow labeled trees.

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?

convergence towards a continuous object ?
well understood:

- Schaeffer's bijection: quadrangulations \leftrightarrow labeled trees.

Random maps

What is the behavior of Q_{n} when n goes to infinity ? typical distances?

convergence towards a continuous object ?
well understood:

- Schaeffer's bijection: quadrangulations \leftrightarrow labeled trees.

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?

convergence towards a continuous object ?
well understood:

- Schaeffer's bijection: quadrangulations \leftrightarrow labeled trees.

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?

convergence towards a continuous object ?
well understood:

- Schaeffer's bijection: quadrangulations \leftrightarrow labeled trees.

Labels in the trees $=$ distances between the vertices and the root.

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?

convergence towards a continuous object ?
well understood:

- Schaeffer's bijection : quadrangulations \leftrightarrow labeled trees.

Labels in the trees $=$ distances between the vertices and the root.

- distance between two random points $\sim n^{1 / 4}+$ law of the distance [Chassaing-Schaeffer '04]
- cvgence of normalized quadrangulations + properties of the limit [Marckert-Mokkadem '06], [Le Gall '07], [Le Gall, Paulin '08] [Miermont '08]

$$
\text { Hausdorff dimension }=4 \quad \text { topology of the limit }=\text { sphere }
$$

- cvgence of normalized quadrangulations towards the Brownian map for Gromov-Hausdorff topology, [Miermont '13], [Le Gall '13]

Random maps

What is the behavior of Q_{n} when n goes to infinity? typical distances?
convergence towards a continuous object ?

Random maps

What is the behavior of Q_{n} when n goes to infinity ? typical distances?
convergence towards a continuous object ?

+ what if quadrangulations are replaced by triangulations, maps, simple triangulations, simple maps, ...?

Idea: The Brownian map is a universal limiting object. All " reasonable models" of maps (properly rescaled) are expected to converge towards it.

Random maps

+ what if quadrangulations are replaced by triangulations, maps, simple triangulations, simple maps, ...?

Idea: The Brownian map is a universal limiting object. All " reasonable models" of maps (properly rescaled) are expected to converge towards it.

Random maps

+ what if quadrangulations are replaced by triangulations, maps, simple triangulations, simple maps, ...?

Idea: The Brownian map is a universal limiting object. All " reasonable models" of maps (properly rescaled) are expected to converge towards it.

So far: • Quadrangulations [Miermont '13 + Le Gall '13]

- $2 p$-angulations and triangulations [Le Gall, '13]
- Quad with no pendant vertices [Beltran, Le Gall, '13]
- Simple triangulations and quad., [Addario-Berry, A., '13]
- General maps [Betinelli, Jacob, Miermont, '13]
- Bipartite maps [Abraham, '14]

Random maps

> + what if quadrangulations are replaced by triangulations, maps, simple triangulations, simple maps, ...?

Idea: The Brownian map is a universal limiting object. All " reasonable models" of maps (properly rescaled) are expected to converge towards it.

So far: • Quadrangulations [Miermont '13 + Le Gall '13]

- $2 p$-angulations and triangulations [Le Gall, '13]
- Quad with no pendant vertices [Beltran, Le Gall, '13]
- Simple triangulations and quad., [Addario-Berry, A., '13]
- General maps [Betinelli, Jacob, Miermont, '13]
- Bipartite maps [Abraham, '14]

Today: • Simple maps [A., Bernardi, Collet, Fusy, '14]

Random maps

+ what if quadrangulations are replaced by triangulations, maps, simple triangulations, simple maps, ...?

Idea: The Brownian map is a universal limiting object. All " reasonable models" of maps (properly rescaled) are expected to converge towards it.

An important remark:
Thanks to an argument of [Le Gall '13], enough to :

- understand the distance between any point and the root,
- show that the distance between two points is tight.
- prove the invariance under rerooting
and use the result of [Miermont '13], [Le Gall '13] to conclude.
So far: no direct proof known.

Random maps

> + what if quadrangulations are replaced by triangulations, maps, simple triangulations, simple maps, ...?

Idea: The Brownian map is a universal limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.

An important remark:

Thanks to an argument of [Le Gall '13], enough to :

- understand the distance between any point and the root,
- show that the distance between two points is tight.
- prove the invariance under rerooting
and use the result of [Miermont '13], [Le Gall '13] to conclude.
To do that :
- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

Random maps

To do that :

- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.
- Quadrangulations [Miermont '13 + Le Gall '13]
- $2 p$-angulations and triangulations [Le Gall, '13]
- Quad with no pendant vertices [Beltran, Le Gall, '13]
- Simple triangulations and quad. [Addario-Berry, A.,'13]
- General maps [Betinelli, Jacob, Miermont, '13]
- Bipartite maps [Abraham, '14]

Random maps

To do that :

- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.
with labeled trees
[Schaeffer '98]
[Bouttier, di Francesco,
Guitter '04]
- Quadrangulations [Miermont '13 + Le Gall '13]
- $2 p$-angulations and triangulations [Le Gall, '13]
- Quad with no pendant vertices [Beltran, Le Gall, '13]
• Simple triangulations and quad. [Addario-Berry, A.,'13]
• General maps [Betinelli, Jacob, Miermont, '13]
- Bipartite maps [Abraham, '14]

Random maps

To do that :

- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

Random maps

To do that :

- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

Random maps

To do that :

- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

More precisely: the result

Theorem : [A., Bernardi, Collet, Fusy]
$\mathcal{S}_{n}=\{$ simple maps with n edges $\}$
$S_{n}=$ uniform random element of \mathcal{S}_{n}. Then:

$$
\left(V\left(S_{n}\right),\left(\frac{1}{2 n}\right)^{1 / 4} d_{S_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

More precisely: the result

Theorem : [A., Bernardi, Collet, Fusy]
$\mathcal{S}_{n}=\{$ simple maps with n edges $\}$
$S_{n}=$ uniform random element of \mathcal{S}_{n}. Then:

$$
\left(V\left(S_{n}\right),\left(\frac{1}{2 n}\right)^{1 / 4} d_{S_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps

More precisely: the result

Theorem : [A., Bernardi, Collet, Fusy]
$\mathcal{S}_{n}=\{$ simple maps with n edges $\}$
$S_{n}=$ uniform random element of \mathcal{S}_{n}. Then:

$$
\left(V\left(S_{n}\right),\left(\frac{1}{2 n}\right)^{1 / 4} d_{S_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorffon the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps
- roughly : need to understand the distance between any pair of points

More precisely: the result

Theorem : [A., Bernardi, Collet, Fusy]
$\mathcal{S}_{n}=\{$ simple maps with n edges $\}$
$S_{n}=$ uniform random element of \mathcal{S}_{n}. Then:

$$
\left(V\left(S_{n}\right),\left(\frac{1}{2 n}\right)^{1 / 4} d_{S_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorffon the isometry classes of compact metric spaces.

- same scaling $n^{1 / 4}$ as for general maps
- roughly : need to understand the distance between any pair of points
- The Brownian Map

Random maps

To do that :

- encode the maps by some trees,
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.

What is a blossoming tree?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
$\#$ closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
$\#$ closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
\# closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
$\#$ closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
$\#$ closing stems $=\#$ opening stems

What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
$\#$ closing stems $=\#$ opening stems

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

What is a blossoming tree ?

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the edges of the tree are oriented + closure edges oriented naturally \Rightarrow orientation of the map without ccw cycles.

What is a blossoming tree ?

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the edges of the tree are oriented + closure edges oriented naturally \Rightarrow orientation of the map without ccw cycles.

Orientations

First: orientation for simple triangulations
3 -orientation $=$ orientation of the edges s.t.

$$
\begin{aligned}
& \operatorname{out}(\boldsymbol{\square})=1 \\
& \operatorname{out}(\mathbf{O})=3
\end{aligned}
$$

Orientations

First: orientation for simple triangulations
3 -orientation $=$ orientation of the edges s.t.

$$
\begin{aligned}
& \operatorname{out}(\boldsymbol{\square})=1 \\
& \operatorname{out}(\mathbf{O})=3
\end{aligned}
$$

Orientations

First: orientation for simple triangulations
3 -orientation $=$ orientation of the edges s.t.

$$
\begin{aligned}
& \operatorname{out}(\boldsymbol{\square})=1 \\
& \operatorname{out}(\mathbf{O})=3
\end{aligned}
$$

These orientations characterize simple triangulations [Schnyder]

Moreover, there exists a unique one without counterclockwise cycles.

Orientations

First: orientation for simple triangulations
3 -orientation $=$ orientation of the edges s.t.

$$
\begin{aligned}
\operatorname{out}(\boldsymbol{\square}) & =1 \\
\operatorname{out}(\mathbf{O}) & =3
\end{aligned}
$$

These orientations characterize simple triangulations [Schnyder]

Moreover, there exists a unique one without counterclockwise cycles.

What about general simple maps ?

Orientations

Next: orientation for simple outer-triangular maps
3-orientation with buds $=$ orientation of the edges and of buds s.t.

$$
\begin{aligned}
\operatorname{out}(\boldsymbol{\square}) & =1 \\
\operatorname{out}(\mathbf{O}) & =3
\end{aligned}
$$

Orientations

Next: orientation for simple outer-triangular maps
3-orientation with buds $=$ orientation of the edges and of buds s.t.

$$
\begin{aligned}
& \operatorname{out}(\boldsymbol{\square})=1 \\
& \operatorname{out}(\mathbf{O})=3
\end{aligned}
$$

and each face of degree d is incident to $d-3$ buds.

Orientations

Next: orientation for simple outer-triangular maps
3-orientation with buds $=$ orientation of the edges and of buds s.t.

$$
\begin{aligned}
\operatorname{out}(\boldsymbol{\square}) & =1 \\
\operatorname{out}(\mathbf{O}) & =3
\end{aligned}
$$

and each face of degree d is incident to $d-3$ buds.

These orientations characterize simple outer-triangular maps [Bernardi, Fusy '10]

Moreover, there exists a unique one without counterclockwise cycles and local configuration:

Orientations

Next: orientation for simple outer-triangular maps
3-orientation with buds $=$ orientation of the edges and of buds s.t.

$$
\begin{aligned}
& \operatorname{out}(\boldsymbol{\square})=1 \\
& \operatorname{out}(\mathbf{O})=3
\end{aligned}
$$

and each face of degree d is incident to $d-3$ buds.

These orientations characterize simple outer-triangular maps [Bernardi, Fusy '10]

Moreover, there exists a unique one without counterclockwise cycles and local configuration:

\Rightarrow Give a canonical triangulation of a simple map

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)
- Orient each inner edge arbitrarily

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)
- Orient each inner edge arbitrarily
- Apply the following local rule :

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)
- Orient each inner edge arbitrarily
- Apply the following local rule :

- See - as opening stems and - as closing stems.

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)
- Orient each inner edge arbitrarily
- Apply the following local rule :

- See - as opening stems and - as closing stems.
- Make the closure

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)
- Orient each inner edge arbitrarily
- Apply the following local rule :

- See - as opening stems and - as closing stems.
- Make the closure
- 3 opening stems are left unmatched,
- one of them is incident to the root corner: the tree is balanced

Oriented binary trees

Oriented binary trees

- Start from a rooted binary tree (each inner vertex has 3 neighbours)
- Orient each inner edge arbitrarily
- Apply the following local rule :

- See - as opening stems and - as closing stems.
- Make the closure
- 3 opening stems are left unmatched, we close them at ∞
- one of them is incident to the root corner: the tree is balanced

Theorem : [Bousquet-Mélou, Schaeffer '00] This is a bijection between balanced oriented binary trees and bipartite cubic maps

From bipartite cubic maps to simple maps

From bipartite cubic maps to simple maps

- Apply the following local rule

From bipartite cubic maps to simple maps

- Apply the following local rule

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

1 green edge crossed

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

next opening stem

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

next opening stem

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

next opening stem

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

- Add 3 vertices and close the remaining opening stems sector by sector

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

next opening stem

- Add 3 vertices and close the remaining opening stems sector by sector
- Connect the 3 outer vertices into a triangle

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:
next opening stem
1 green edge crossed
- Add 3 vertices and close the remaining opening stems sector by sector

Theorem : [ABCF] This is a bijection between outer-triangular simple maps and bipartite cubic maps

From bipartite cubic maps to simple maps

- Apply the following local rule:

- Turning clockwise around the tree, do the following closures:

Theorem : [ABCF] This is a bijection between outer-triangular simple maps and bipartite cubic maps

From bipartite cubic maps to simple maps

- Apply the following local rule:

- Turning clockwise around the tree, do the following closures:

Theorem : [ABCF] This is a bijection between outer-triangular simple maps and bipartite cubic maps

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:

Theorem: [ABCF] This is a bijection between outer-triangular simple maps and bipartite cubic maps

From bipartite cubic maps to simple maps

- Apply the following local rule :

- Turning clockwise around the tree, do the following closures:
next opening stem $\quad 1$ green edge crossed
- Add 3 vertices and close the remaining opening stems sector by sector

Theorem : [ABCF] This is a bijection between outer-triangular simple maps and bipartite cubic maps

From bipartite cubic maps to simple maps

Corollary: [ABCF] We get a bijection between outer-triangular simple maps and balanced oriented binary trees (with $n+3$ edges)
(with n edges)

Same bijection with labels

Same bijection with labels

- Label 0 the first corner.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1.

Labels \approx depth of the face in the cubic map

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem: increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last $\mathbf{0 , 1}$ and 2 corners

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

0 Labels \approx depth of the face in the cubic map Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add $\mathrm{a} \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

($=$ add a \longrightarrow before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

Same bijection with labels

- Label 0 the first corner.

In clockwise order, apply the following rules:

- After an opening stem : increase by 1.
- After a closing stem : decrease by 1 .

Labels \approx depth of the face in the cubic map
Unmatched stems $=$ last 0,1 and 2 corners

- Apply the following local rule :

$(=$ add $a \longrightarrow$ before each descent and color the corresponding corner and vertex)
- Erase all non-purple and do the following closures

- Add 3 vertices and close the remaining opening stems in the same way.

From blossoming trees to labeled trees

From blossoming trees to labeled trees

From blossoming trees to labeled trees

Around each vertex :

For instance, for a node of degree 1, 4 possibilities:

From blossoming trees to labeled trees

Around each vertex :

For instance, for a node of degree 1, 4 possibilities:

From blossoming trees to labeled trees

To do that :

- encode the maps by some trees.
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.
- Labeled tree $=$ GW binary trees + random displacements on edges

exactly the setting of [Marckert '08]:
convergence to the Brownian snake with the labels normalized by $(2 n)^{1 / 4}$

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label processes of a labeled tree

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label processes of a labeled tree

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}\left(\right.$ or $\left.C_{n}\right)=$ contour process

Convergence of labeled trees

Theorem : [Marckert '08]

For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process
If T is a labeled tree, $\left(C_{n}(i), Z_{n}(i)\right)=$ contour and label processes

Convergence of labeled trees

Theorem : [Marckert '08]

For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process
If T is a labeled tree, $\left(C_{n}(i), Z_{n}(i)\right)=$ contour and label processes

Convergence of labeled trees

Theorem : [Marckert '08]
For a sequence of simple random outer-triangular maps $\left(M_{n}\right)$, the contour and label process of the associated labeled tree satisfie:

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(1 / 2 n)^{1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow[n \rightarrow \infty]{(d)}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Contour and label proçesses of a labeled tree

i and $j=$ same vertex of T
$T \longrightarrow C_{n}^{T}$ (or $\left.C_{n}\right)=$ contour process
If T is a labeled tree, $\left(C_{n}(i), Z_{n}(i)\right)=$ contour and label processes

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

$\left(e_{t}\right)_{0 \leq t \leq 1}=$ Brownian excursion

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$
1st step : the Brownian tree [Aldous]

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

2nd step: Brownian labels
Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t)$
$Z \sim$ Brownian motion on the tree

Brownian snake $\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1}$

1st step : the Brownian tree [Aldous]

2nd step: Brownian labels
Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t)$
$Z \sim$ Brownian motion on the tree

Theorem :

$$
\left((8 n)^{-1 / 2} C_{\lfloor n t\rfloor},(2 n / 1)^{-1 / 4} \tilde{Z}_{\lfloor n t\rfloor}\right)_{0 \leq t \leq 1} \xrightarrow{\stackrel{(d)}{\rightarrow}}\left(e_{t}, Z_{t}\right)_{0 \leq t \leq 1},
$$

Distances in simple outer-triangular maps

To do that :

- encode the maps by some trees.
- study the limits of trees,
- interpret the distance in the maps by some function of the tree.
$S_{n}=$ outer-triangular simple map
$\left(C_{\lfloor n t\rfloor}, \tilde{Z}_{\lfloor n t\rfloor}\right)=$ contour and label process of the associated tree
$Z_{\lfloor n t\rfloor}=$ distance in the map between vertex " $\lfloor n t\rfloor$ " and the root.
Theorem :
$S_{n}=$ random outer-triangular simple map, then for all $\varepsilon>0$:

$$
\mathbb{P}\left(\sup _{0 \leq t \leq 1}\left\{\left|\tilde{Z}_{\lfloor n t\rfloor}-Z_{\lfloor n t\rfloor}\right|\right\} \geq \varepsilon n^{1 / 4}\right) \rightarrow 0 .
$$

i.e. the label process of the tree gives the distance to the root in the map.

Distances in simple maps

Claim : $d_{M}($ root,$u) \leq$ Label of u

Distances in simple maps

Claim : $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.

Distances in simple maps

Claim : $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.

Distances in simple maps

Claim : $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.

Distances in simple maps

Claim : $d_{M}($ root,$u) \leq$ Label of u

- Consider the Left Most Path from (u, v) to the root face.
- From the property of the closure, on the left of the LMP the labels decrease exactly by 1 .
- The LMP is not self-intersecting: it reaches the outer-face

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

Consider the 3-orientation of the map with buds

LMP are almost geodesic

Consider the 3-orientation of the map with buds

Use the buds to triangulate the submap surrounded by the two paths.

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Consider the 3-orientation of the map with buds

Use the buds to triangulate the submap surrounded by the two paths.

Euler Formula :
$\left|E\left(T_{q}\right)\right|=3\left|V\left(T_{q}\right)\right|-3-\left(\ell_{p}+\ell_{q}\right)$
3-orientation + LMP :

$$
\begin{aligned}
& \left|E\left(T_{q}\right)\right| \geq 3\left|V\left(T_{q}\right)\right|-2 \ell_{q}-2 \\
& \quad \Longrightarrow \ell_{q} \geq \ell_{p}+1
\end{aligned}
$$

Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ?

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES

with possible equality

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES ... but not too often

Bad configuration = too many windings around the LMP
But w.h.p a winding cannot be too short.
\Longrightarrow w.h.p the number of windings is $o\left(n^{1 / 4}\right)$.

LMP are almost geodesic

Leftmost path
Another path: can it be shorter ? YES ... but not too often
 Bad configuration $=$ too many windings around the LMP

But w.h.p a winding cannot be too short.
\Longrightarrow w.h.p the number of windings is $o\left(n^{1 / 4}\right)$.
Proposition: [Addario-Berry, A. '13]
For $\varepsilon>0$, let $A_{n, \varepsilon}$ be the event that there exists $u \in M_{n}$ such that
Label of $u \geq d_{M_{n}}(u$, root $)+\varepsilon n^{1 / 4}$.
Then under the uniform law on \mathcal{M}_{n}, for all $\varepsilon>0$:

$$
\mathbb{P}\left(A_{n, \varepsilon}\right) \rightarrow 0 .
$$

Distances are tight

Distances are tight

Distances are tight

$$
\check{Z}_{u, v}=\min \left\{Z_{s}, u \leq s \leq v\right\}
$$

Distances are tight

Distances are tight

Distances are tight

Blue path $=$ path of length $Z_{u}+Z_{v}-2 \check{Z}_{u, v}+2$
Since $\left(n^{-1 / 4} Z_{\lfloor n t\rfloor}\right)$ converges $\Rightarrow\left(d_{n}\right)$ tight

The result for the last time

Theorem : [A., Bernardi, Collet, Fusy]
$\mathcal{S}_{n}=\{$ simple maps with n edges $\}$
$S_{n}=$ uniform random element of \mathcal{S}_{n}. Then:

$$
\left(S_{n},\left(\frac{1}{2 n}\right)^{1 / 4} d_{S_{n}}\right) \xrightarrow{(d)}\left(M, D^{\star}\right)
$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

The Brownian Map ??

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

The Brownian map

$$
\begin{aligned}
& \mathcal{T}_{e}=[0,1] / \sim_{e} \\
& u \sim_{e} v \text { iff } d_{e}(u, v)=0
\end{aligned}
$$

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] .
$$

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
\begin{gathered}
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] \\
D^{*}(a, b)=\inf \left\{\sum_{i=1}^{k-1} D^{\circ}\left(a_{i}, a_{i+1}\right): k \geq 1, a=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=b\right\},
\end{gathered}
$$

The Brownian map

Conditional on \mathcal{T}_{e}, Z a centered Gaussian process with $Z_{\rho}=0$ and $E\left[\left(Z_{s}-Z_{t}\right)^{2}\right]=d_{e}(s, t) \quad Z \sim$ Brownian motion on the tree

$$
\begin{gathered}
D^{\circ}(s, t)=Z_{s}+Z_{t}-2 \max \left(\inf _{s \leq u \leq t} Z_{u}, \inf _{t \leq u \leq s} Z_{u}\right), \quad s, t \in[0,1] . \\
D^{*}(a, b)=\inf \left\{\sum_{i=1}^{k-1} D^{\circ}\left(a_{i}, a_{i+1}\right): k \geq 1, a=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=b\right\},
\end{gathered}
$$

Then $M=\left(\mathcal{T}_{e} / \sim_{D^{\star}}, D^{*}\right)$ is the Brownian map.

A word of conclusion

Nice to see that the idea of LMP introduced for simple triangulations also work for simple maps.
Natural further step: try to adapt the techniques for all the bijections involving blossoming trees. In particular in the unified setting of [Bernardi, Fusy '10] and [A., Poulalhon '14]

A word of conclusion

Nice to see that the idea of LMP introduced for simple triangulations also work for simple maps.
Natural further step: try to adapt the techniques for all the bijections involving blossoming trees. In particular in the unified setting of [Bernardi, Fusy '10] and [A., Poulalhon '14]

Question: Can we make it work for 3-connected planar maps ?

A word of conclusion

Nice to see that the idea of LMP introduced for simple triangulations also work for simple maps.
Natural further step: try to adapt the techniques for all the bijections involving blossoming trees. In particular in the unified setting of [Bernardi, Fusy '10] and [A., Poulalhon '14]

Question: Can we make it work for 3 -connected planar maps ?
By Whitney's theorem, a 3-connected planar graph has a unique embedding as a planar map.
\Rightarrow would permit to get results about 3-connected planar graphs (and then about 2-connected and connected planar graphs).

A word of conclusion

Nice to see that the idea of LMP introduced for simple triangulations also work for simple maps.
Natural further step: try to adant the techniques for all the bijections involving blossoming trr in the unified setting of
[Bernardi, Fusy '10]

Question: Can w
By Whitney's theort.

Thank you !

zted planar maps ?
ar graph has a unique embedding as a planar lo...
\Rightarrow would permit to get results about 3-connected planar graphs (and then about 2-connected and connected planar graphs).

